Full Paper of Dr. Edward Archer

In Defense of Sugar: A Critique of Diet-Centrism

Following up on our previous communication the Executive Director would like to call your attention to the full paper of Dr. Edward Archer and his letter to the editor that accompanied this work. His analysis contains sound scientific evidence of the role of sugar in human nutrition and categorically refutes many claims falsely made against sugar.

We strongly recommend you review in detail and extrapolate the information that can be positively used in your communications.
In Defense of Sugar: A Critique of Diet-Centrism

Edward Archer
Evolving FX, Jupiter, FL 33468, United States

ABSTRACT

Sugars are foundational to biological life and played essential roles in human evolution and dietary patterns for most of recorded history. The simple sugar glucose is so central to human health that it is one of the World Health Organization’s Essential Medicines. Given these facts, it defies both logic and a large body of scientific evidence to claim that sugars and other nutrients that played fundamental roles in the substantial improvements in life- and health-spans over the past century are now suddenly responsible for increments in the prevalence of obesity and chronic non-communicable diseases. Thus, the purpose of this review is to provide a rigorous, evidence-based challenge to ‘diet-centrism’ and the disease-mongering of dietary sugar. The term ‘diet-centrism’ describes the naïve tendency of both researchers and the public to attribute a wide-range of negative health outcomes exclusively to dietary factors while neglecting the essential and well-established role of individual differences in nutrient-metabolism. The explicit conflation of dietary intake with both nutritional status and health inherent in ‘diet-centrism’ contravene the fact that the human body is a complex biologic system in which the effects of dietary factors are dependent on the current state of that system. Thus, macronutrients cannot have health or metabolic effects independent of the physiologic context of the consuming individual (e.g., physical activity level). Therefore, given the unscientific hyperbole surrounding dietary sugars, I take an adversarial position and present highly-replicated evidence from multiple domains to show that ‘diet’ is a necessary but trivial factor in metabolic health, and that anti-sugar rhetoric is simply diet-centric disease-mongering engendered by physiologic illiteracy. My position is that dietary sugars are not responsible for obesity or metabolic diseases and that the consumption of simple sugars and sugar-polymers (e.g., starches) up to 75% of total daily caloric intake is innocuous in healthy individuals.

Keywords: Sugar, Diet, Metabolism, Obesity, Nutrition, Public policy

Contents

Introduction .. 0
Without sugar, we die ... 0
Sugar is a fundamental component of life ... 0
The necessity of sugar for human life ... 0
Sugar and sugar-polymers: the major sources of nutrient-energy for humans ... 0
Sugar is an essential medicine ... 0
Sugar saves lives .. 0
A ‘sweet’ though-experiment ... 0
Clinical dilemma .. 0
Clinical questions .. 0
Question #1 .. 0
Question #2 .. 0
Extra credit question .. 0
Answers ... 0
Answer #1 ... 0
Answer #2 ... 0

Abbreviations: NCDs, non-communicable diseases; PA, physical activity; SSBs, sugar-sweetened beverages; T2DM, type II diabetes mellitus; US, United States; WHO, World Health Organization.

E-mail address: archer1@evolvingfx.com

https://doi.org/10.1016/j.pcad.2018.04.007
0033-0620/© 2018 Elsevier Inc. All rights reserved.

Please cite this article as: Archer E. In Defense of Sugar: A Critique of Diet-Centrism. Prog Cardiovasc Dis (2018), https://doi.org/10.1016/j.pcad.2018.04.007
Introduction

“...the subject of nutrition seems to have a special appeal to the credulous, the social zealot and, in the commercial field, the unscrupulous. This fact makes the solid advancement of nutritional science particularly difficult... [and will] strike despair in the hearts of the sober, objective scientists.”

[Ancel Keys1]

History demonstrates that when demonstrably false information is widely disseminated, scientific progress is impeded, research resources are misdirected, and public health is placed in jeopardy. 2–6 Thus, the purpose of this review is to provide a rigorous, evidence-based challenge to the current disease-mongering of dietary sugar and the simplistic notion that ‘we are what we eat’. Herein, I demonstrate that it contravenes a large body of highly-replicated scientific research to claim that sugar and other nutrients (e.g., saturated fats) that played essential roles in human evolution7–10 and the substantial improvements in public health over the past century. 11–14 are now suddenly responsible for causing obesity and chronic non-communicable diseases (NCDs).

In this review, the term ‘diet-centrism’ describes the naïve tendency of researchers and the public to attribute a wide-range of negative outcomes exclusively to dietary factors while neglecting the essential role of individual differences in nutrient-metabolism and health. The explicit conflation of diet with both nutritional status and health inherent in diet-centrism contravenes the fact that the human body is a complex biologic system in which the effects of dietary factors are entirely dependent on the current state of that system (e.g., metabolic phenotype, nutrient-energy status). Thus, because the effects of sugar consumption are dependent of the physiologic context of the consumer, prescriptive, population-level dietary recommendations are both unscientific and futile: one size does not and cannot fit all.

Several arguments are presented to counter the logical and scientific errors induced via diet-centrism. Table 1 presents a summary. For clarity, herein the term ‘sugars’ refers to both mono and disaccharides (e.g., glucose, fructose, and sucrose). The term ‘sugar-polymers’ (or ‘glucose-polymers’) refers to polysaccharides, such as starches, glycogen, and other molecules (e.g., cellulose) formed from the simple sugar glucose. Within the context of the human diet, starches (e.g., rice, potatoes) and glycogen are sources of sugar (glucose) to meet metabolic demands. While all sugars and sugar-polymers are carbohydrates, not all carbohydrates are relevant to the present review. As such, the more precise terms sugar and sugar-polymers will be used.

Without sugar, we die

Sugar is a fundamental component of life

Sugar, in its many forms, is an essential constituent of all biological life from the construction of nucleic acids (e.g., DNA15) to organisational structure (e.g., cellulose) and cellular respiration (e.g., a metabolic fuel). Nearly all bacteria, plants, non-human and human animals can metabolize the simple sugar glucose (a hexose monosaccharide), and nearly all biological ecosystems depend on photosynthesis, which is the conversion of sunlight to sugar. Thus, sugars and sugar-polymers are the most important organic compounds on Earth.

The necessity of sugar for human life

In humans and other mammals, sugars and the sugar-polymer glycogen are essential for basal metabolic processes and physical activity (PA). The failure to consume or synthesize sufficient sugar to maintain

Table 1.
A summary of the arguments and evidence that counter the logical and scientific errors induced via ‘diet-centrism’.

Evidence contrary to the ‘diet-centric’ disease-mongering of dietary sugars

Without sugar, we die: biological life depends on sugar in its many forms. Dietary sugars and sugar-polymers were the predominant source of nutrient-energy for most human populations since the invention of agriculture. Sugar (glucose) is so vital to human health and well-being that it is one of the World Health Organization’s (WHO) essential medicines. Diet-centrism is based on physiologic illiteracy: one size does not and cannot fit all. Physical activity (PA) is the major modifiable determinant of energy intake, energy expenditure, nutrient-energy partitioning, and concomitant metabolic health. Diet is merely a necessary but trivial component. The consumption of dietary sugars up to 80% of total energy intake is entirely innocuous in active populations. There is a strong, positive association between sugar availability/consumption and health. Diet-centrism relies on pseudoscientific and inadmissible data. Obesity and T2DM: blood sugar, not dietary sugars matter. Diet-centric reductionism led researchers, policy-makers, and the public seriously astray, and led to biased and unscientific research and policy recommendations. The consequence has been a general ‘fear of food’ and the disease-mongering of dietary sugars and fats.

Please cite this article as: Archer E. In Defense of Sugar: A Critique of Diet-Centrism. Prog Cardiovasc Dis (2018), https://doi.org/10.1016/j.pcad.2018.04.007
adequate supply to glucose-dependent tissues (e.g., neurons, red blood cells) results in rapid death.16 For example, the cells of the central nervous system require a large, finely regulated, and continuous supply of sugar (glucose),16,17 and cell death occurs rapidly with sugar deprivation (e.g., neuroglycopenia).17 Stated more simply, if we do not eat enough sugar or sugar-polymers, or our bodies do not produce enough sugar, we die.

Sugar and sugar-polymers: the major sources of nutrient-energy for humans

Given the importance of sugars and sugar-polymers in biological life processes and their essential role in energy metabolism,18,19 it is not surprising that these nutrients played critical roles in both human evolution7–9,20 and dietary history.21–26 For example, sugars and sugar-polymers are major nutritive constituents of many foods and beverages including breast milk, dairy products, fruit, fruit juices, honey, sucrose (i.e., table sugar; a disaccharide of glucose and fructose), sugar-sweetened beverages (SSBs), rice, beans, potatoes, wheat, corn, quinoa, and other cereal grains. As such, sugars and sugar-polymers were the major source of nutrient-energy (calories) for most of the global population throughout human history,2,8,9,21–26 and now account for 45–70\% of both total energy intake19,26 and expenditure (as metabolic fuels18).

Given these facts, it is illogical to posit that foods and beverages that were a substantial part of human dietary patterns since the dawn of recorded history are now suddenly responsible for the increasing global prevalence of obesity and NCDs. As explained in following sections, PA is the major modifiable determinant of metabolic health, and therefore, increments in the prevalence of obesity and NCDs are not caused by unhealthy diets, but are metabolic conditions driven by non-genetic evolutionary processes engendered by physical inactivity over multiple generations.7–14

Sugar is an essential medicine

Sugar saves lives

Malnutrition and diarrheal diseases are responsible for \textasciitilde50\% of deaths of children under five,15,36 and dietary sugars play essential roles in nutritional rehabilitation. Sugar in the form of glucose is one of the World Health Organization’s (WHO’s) Essential Medicines,37 and the treatment of malnutrition and dehydration was recently characterized as “\textit{A liter of water. A fistful of sugar. A half-teaspoon of salt.}”28 Treatment begins with feedings of “\textit{sugar water…every 2 hours round-the-clock.}”29 During recovery, the WHO prescribes a diet that is more than five times the current WHO recommendations for sugar consumption.36,40 It was estimated that 90\% of all diarrheal mortality could be prevented if sugar-based prescriptions were used in 100\% of cases.28 In other words, sugary sweetened beverages save lives. The contradiction between the WHO’s prescription and proscription of dietary sugars is an exemplar of diet-centrism in public policy, and why ignoring the physiologic context of the individual is both naïve and unscientific.

A ‘sweet’ thought-experiment

Imagine you are a physician in a rural village in which the prevalence of malnutrition and wasting in children is high. For nutritional rehabilitation, you have a large supply of sustainably grown, organic kale and quinoa, and a large supply of soda (i.e., SSBs).

Clinical dilemma

It is generally assumed that kale and quinoa are much “healthier” than SSBs, and kale was described as a “superfood.”41 More importantly, as an educated clinician you read a myriad of allegedly scientific papers, books, and newspaper articles by physicians, journalists, and researchers describing ‘added sugars’ and SSBs as “poison” and “toxic.”42–44 In fact, a prominent science writer quoted an eminent pediatric endocrinologist using these exact terms.43

Clinical questions

Question #1

Do you supplement the diets of the malnourished, stunted children with the locally and sustainably grown, organic kale and quinoa or do you prescribe the consumption of SSBs every 2 hrs?

Question #2

Which treatment is more palatable?

Extra credit question

Are more foodborne illnesses and deaths in the United States (US) directly attributed to the consumption of fruits, nuts, and vegetables or SSBs?

Answers

Answer #1

If you supplement the malnourished children’s diet with kale and quinoa, your patients will die. If you supplement their diet with SSBs or some other form of ‘added sugars’ (e.g., sugar water), your patients may recover. If ‘healthy’ is defined at a minimum as maintaining basic vital functions and survival, in this context SSBs are ‘healthier’ than organic, sustainably and locally-grown kale and quinoa.

Answer #2

The nutritional rehabilitation with SSBs is better tolerated and leads to better outcomes because it is more palatable, more energy-dense, and the sugars improve rehydration.36

Answer to extra credit question

46\% of all foodborne illnesses and a sizeable number of food-related deaths in the US from 1998 to 2008 were directly attributed to the consumption of fruits, nuts and vegetables. Leafy vegetables caused more illnesses (22\%) than any other commodity and were responsible for 6\% of deaths. No foodborne illnesses or deaths were directly attributed to SSBs.45

Summary of the “sweet” thought-experiment

This thought-experiment illustrates the elementary but often ignored fact that the physiologic context of the consuming individual is the most important consideration in the effects of diet on health. Thus, ‘health’ is a property of an individual and not an inherent property of foods or beverages. Therefore, the dichotomy of “healthy” versus “unhealthy” when referring to foods and beverages that are safe to consume (i.e., relatively pathogen-free) is not valid, scientific, or logical. The illiterate nature of this false dichotomy was revealed by a recent New York Times article46 in which neither the public, dieticians, researchers, nor policy makers could agree on which foods were ‘healthy’ and which were ‘unhealthy’. Thus, the diet-centric myth that “we are what we eat” is misleading to health professionals, patients and the public because it ignores the reality of physiologic context and individual differences. In summary, the use of disease-mongering terms such as ‘unhealthy’, ‘toxic’ and ‘poisonous’ when referring to dietary sugar is simply unscientific.
The physiologic illiteracy of diet-centrism: one size does not and cannot fit all

The term ‘diet-centrism’ describes the naïve and physiologically illiterate tendency of researchers and the public to attribute a wide-range of negative health outcomes exclusively to dietary factors while neglecting the essential and well-established role of individual differences in nutrient-metabolism. The explicit conflation of ‘diet’ with nutritional status and health in diet-centrism contravenes the fact that the human body is a complex biologic system in which the effects of dietary factors are dependent on the current state of that system. Thus, it is a fact that macro- and micronutrients cannot have health or metabolic effects independent of the physiologic context of the consuming individual (e.g., metabolic phenotype). For clarity, an individual’s metabolic phenotype is characterized by myriad factors such as body cellularity (i.e., the ratio of high to low metabolically active cells), PA and fitness levels, age, sex, reproductive status, illness, and the energy status of the systems responsible for metabolic control (e.g., skeletal muscle, liver).47–52

The necessity of increments in serum energy substrates

Diet-centric researchers and policy makers erroneously assume that population-level dietary recommendations on sugar and fat consumption are valid because the increments in serum energy substrates (i.e., blood sugars and lipids) induced by sugars and/or other dietary constituents (e.g., sugar-polymers, proteins, fats) lead to obesity, metabolic dysfunction, and NCDs (e.g., see40,51,54). This demonstrably false belief ignores the fact that the rise in serum and tissue energy substrates simply, it is not pathological. Rather, it is the failure of skeletal muscle- and hepatic-cells to dispose of serum nutrient-energy substrates in nutrient-metabolism. The explicit concern in nutrient-energy storage and body-mass.59,61 The increased body-mass initiates a positive feedback-loop that decreases strength-to-mass and increases deterioration in peripheral and central insulin sensitivity, and nutrient-energy partitioning.27,28,47,50–52,73–100 Stated more simply, PA affects both sides of the energy balance equation, and by doing so determines metabolic health. The evidence for this is both rigorous, comprehensive, and unequivocal.28,29,47,50–52,73,61,65–67,70–73

Because metabolic health depends on PA and the maintenance of the reciprocal relationship between energy expenditure and the consumption of nutrient-energy, it is not surprising that disturbances of this relationship via large decrements in PA and consequent declines in both fitness and PA energy expenditure over the past century70,71–73 led to increases in the prevalence of obesity and NCDs.27,29,73,101,106–107 This large body of evidence and the role of skeletal muscle-cell metabolic flux are often underappreciated by diet-centric researchers.108

The physiologic mechanism of PA and metabolic health

A detailed description of the mechanisms by which PA determines metabolic heath is beyond the scope of this review. Nevertheless, a summary is necessitated given the widespread lack of understanding of the role of PA in metabolic health. Briefly, PA induces contractions of skeletal muscle-cells that are metabolically costly and reduce stored energy (e.g., glycogen, lipids) in a dose-dependent manner (i.e., frequency, intensity, duration, and mode/type of PA). The decrement in stored energy causes increments in the uptake of both blood sugar and lipids via insulin-dependent and insulin-independent (e.g., contraction-induced) mechanisms.82,86

The increased disposal of serum nutrient-energy substrates by skeletal muscle-cells leads to a decline in blood sugar that stimulates hepatic-cells to synthesize sugar (glucose) via gluconeogenesis to maintain blood sugar levels. The energy expended via these endogenous sugar-producing processes reduces hepatic nutrient-energy stores (e.g., glycogen and lipids) and causes concomitant increments in the uptake of blood sugar and lipids by hepatic-cells, and over time increments in energy intake.72 The metabolic costs of gluconeogenesis explain the beneficial effects of PA on nonalcoholic fatty liver disease.109,110

In summary, PA induces glycogen and lipid depletion/repletion cycles (i.e., metabolic-flux) in both skeletal muscle- and hepatic-cells. These cycles determine metabolic health by maintaining insulin sensitivity and inducing the partitioning of nutrient-energy to metabolically active tissues thereby reducing the availability of blood sugar and lipids for other processes (e.g., adipogenesis, de novo lipogenesis).

PA and nutrient-energy intake

PA unequivocally affects appetite65,69,98 and is the major modifiable determinant of energy intake.59–61,67–72,111 Thus, PA affects both sides of the energy balance equation (i.e., ‘energy-in’ and ‘energy-out’). The relationship between PA and energy intake was described millennia ago when Aristotle wrote that the defining characteristic of animals was the necessity of bodily movement (i.e., PA) in order to eat (i.e., energy intake), and contrasted the daily PA of animals with that of plants, which have the luxury of energy acquisition and survival despite stasis.112 Yet the specific effects of PA were not demonstrated until ~60 years ago by Mayer and colleagues.59,60,66,68 These results were replicated more recently with both observational and rigorous experimental designs.51,67,69–72 As depicted in Fig. 1, these studies demonstrated a curvilinear relationship between chronic PA, body-weight, and energy intake in both humans and non-human animals.59,61 This inter-species parallelism is expected in evolutionarily conserved relationships.

When individuals decrease their PA below their “metabolic tipping point”,27,28 (denoted as Sedentary in Fig. 1), energy intake is dissociated from energy expenditure causing more calories to be consumed than expended. The resulting positive energy balance leads to increments in nutrient-energy storage and body-mass.59,61 The increased body-mass initiates a positive feedback-loop that decreases strength-to-

Please cite this article as: Archer E. In Defense of Sugar: A Critique of Diet-Centrism. Prog Cardiovasc Dis (2018), https://doi.org/10.1016/j.pcad.2018.04.007
weight-ratios that further depresses PA (i.e., heavier/larger bodies move less30,113) and leads to further decrements in insulin sensitivity in both peripheral and central tissues. Thus, physical inactivity drives the over-consumption that leads to metabolic diseases.

Given that skeletal muscle-cells are responsible for 75 to 95% of insulin-mediated whole body glucose uptake74, any decrement in the insulin sensitivity of these cells will adversely affect metabolic health. As described by DeFronzo, the loss of skeletal muscle cell insulin sensitivity and concomitant insulin resistance is the primary defect in type II diabetes mellitus (T2DM).80 The mechanisms for the progression from the loss of insulin sensitivity to T2DM are quite simple. As low PA and high sedentary behaviors drive increased energy-intake in concert with decrements in skeletal muscle- and hepatic-cell insulin sensitivity, the ability of pancreatic beta-cells to compensate for the reduced disposal of blood sugar results in the loss of metabolic control and insulin resistance. Over time, T2DM develops as pancreatic-beta cells become exhausted and/or lose their sensitivity to increments in blood sugar.50,78,80 Therefore, as depicted by the 'Sedentary' tipping point in Fig. 1, there is a minimum amount of PA (and concomitant glycogen and lipid depletion-repletion cycles) necessary to maintain both insulin sensitivity and metabolic health.47,114 This dose varies by metabolic phenotype (e.g., body cellularity27,28). Conversely, as active individuals increase PA, energy intake increases in parallel, and these individuals remain in neutral energy balance because the increments in energy intake are partitioned and stored in metabolically active tissues (e.g., skeletal muscle- and hepatic-cells).47,48,61,75-77 This explains why increases in exercise have little effect on body weight in moderately active individuals. As discussed below, given the necessity to increase caloric consumption to meet the metabolic demands of PA, sugar and sugar polymers are the dietary choice of highly-active individuals.

The necessity of sugar for PA

In addition to their essential roles in the maintenance of basal metabolic processes (e.g., brain function), sugar and sugar-polymers (i.e., glucose and glycogen) are also requisite energy substrates for PA.115 While at rest, skeletal muscle-cells are a major determinant of fatty acid oxidation,116-118 but as the dose of PA increases, the oxidation of blood sugar and glycogen increases exponentially.117,118 The energy demands of PA behaviors are variable30,119 and can exceed that of basal metabolism.30,120 The increased demands of high levels of PA require that large amounts of dietary sugar and/or sugar polymers be consumed. Thus, as described in the following section, numerous organizations recommend diets that are high in sugar and/or sugar polymers for recovery, health, and performance.

Recommendations for elevated sugar consumption

Given the necessity of dietary sugars and/or sugar-polymers for PA and athletic performance, medical and health organizations such as the American College of Sports Medicine and the American Dietetic Association recommend a high sugar and/or high sugar-polymer diet for

E. Archer / Progress in Cardiovascular Diseases xxx (2018) xxx–xxx

Please cite this article as: Archer E. In Defense of Sugar: A Critique of Diet-Centrism. Prog Cardiovasc Dis (2018), https://doi.org/10.1016/j.proccad.2018.04.007
recovery and performance enhancement in highly-active individuals. These evidence-based guidelines explicitly recognize the importance of individual differences and recommend sugar and sugar-polymer consumption ranging from 6 to 10 g per kilogram of body mass per day depending on the total daily energy expenditure, sex and training status of the individual, mode of training, and the environmental conditions during exercise. These recommendations vastly exceed the diet-centric recommendations (e.g., see) that ignore individual differences in metabolic phenotype.

Sugar consumption is entirely innocuous in active populations

Given the large energy demands of PA, it is not uncommon for active individuals and populations to consume more than 70% of their energy needs in some form of sugars, and/or sugar-polymer. Anthropologic research shows that modern hunter-gatherers seasonally consumed 20–80% of their total energy intake as ‘added sugar’ (i.e., honey, a disaccharide of glucose and fructose) while increasing their glycemic and fructose loads via the intrinsic sugars in fruits and tubers. This is many times greater than current recommendations. Despite the massive consumption of sugar and high glycemic loads, these populations have some of the lowest NCD risks ever recorded. For example, modern hunter-gathers have a very low prevalence of hypertension, low body mass index, low total cholesterol, and unlike inactive Americans, these health metrics do not vary with age.

The extremely low-prevalence of obesity and NCDs in these populations in concert with massive sugar consumption can be explained by their high PA levels and concomitant levels of skeletal muscle and hepatic-cell metabolic-flux. Hill et al. described one modern hunter-gatherer population as, “a healthy robust population that maintains a high [physical] activity profile”. Raath et al. stated, “the Hadza engage in over 14 times as much MVPA [moderate to vigorous PA] as subjects participating in large epidemiological studies in the United States. We found no evidence of risk factors for cardiovascular disease in this population (low prevalence of hypertension across the lifespan, optimal levels for biomarkers of cardiovascular health).”

Epidemiologic evidence: a positive association between sugar consumption and health

In addition to anthropologic evidence, epidemiologic evidence demonstrates that highly-active individuals and athletes exhibit high levels of metabolic health throughout their lifespan. These individuals maintain high insulin sensitivity in concert with low levels of body fat and low levels of metabolic disease. While consuming diets rich in simple sugars and using SSBs to enhance athletic performance, consumptions in public health should not have occurred in confluence with large increments in the availability of dietary sugars. Clearly, a century of increased sugar availability did not have the deleterious dose-dependent effects that the diet-centric rhetoricians claim.

Similarly, the United Kingdom experienced increases in health and wellbeing in lockstep with increases in sugar availability as it rose from less than 10 lbs. per capita at the turn of the 19th century to over 100 lbs. before the Second World War. As in the United States, this substantial increase is sugar availability was linked to better, not worse health. For example, “Significant positive correlations exist between the secular increase in brain weight of adults in London born between 1860 and 1940, and the secular trend in sugar consumption in the United Kingdom.” Clearly, these data do not support a negative effect of increased sugar consumption on health and wellbeing.

A natural experiment: increased sugar consumption = improved health

With the fall of the Soviet Union in the 1980s, Cuba was forced to rely on domestic crops such as sugar cane. While overall sugar production declined, domestic sugar utilization increased from 530 metric tons in 1980 to 637 in 1995. Concomitant with that increase in sugar use was a large and significant increase in obesity, T2DM, and NCDs. These results suggest that increments in both PA and dietary sugar lead to improvements in metabolic health.

Diet-centrism relies on pseudoscientific and inadmissible data

Diet-disease relations were posited early in recorded history, and it is now widely established that an individual’s health may be severely affected by his or her dietary intake. For example, if an individual chronically fails to consume sufficient nutrient-energy to meet metabolic demands, that person will die (i.e., starve to death). Similarly, if a person does not consume adequate levels of micronutrients, he or she will suffer diseases specific to the dietary deficiency (e.g., pellagra from insufficient niacin, or scurvy from insufficient Vitamin C). It is important to note that the established causal effects of diet are limited exclusively to disease-specific deficiencies and starvation (i.e., protein-energy malnutrition). Yet, beginning in the mid-20th century nutrition researchers began speculating that the overconsumption of specific macro-nutrients, foods, and beverages were responsible for a wide variety of NCDs and obesity. Despite the fact that these speculations were not supported by the extant evidence and failed to meet many of Bradford Hill’s criteria (e.g., strength, consistency, biological gradient, and specificity), they immediately gained widespread political support. Given the substantial evidence to the contrary, diet-centric investigators began employing a demonstrably pseudoscientific method to collect dietary data. These methods, known as Memory-Based Dietary Assessment Methods (MBMs; e.g., food frequency questionnaires), were based on the naive notion that a person’s usual diet could be measured simply by asking what he or she remembered eating and drinking.

Food availability data: a positive association between sugar consumption and health

From a historical perspective, the greatest increases in sugar availability in the US occurred from the late 19th century until World War II and remained relatively flat until 1980. During this period, sugar availability increased from less than 10 lbs. per capita to more than 100 lbs. per capita per year; an increase of more than 1 lb. per person per week. Given that the US population experienced large improvements in every health metric examined over the period from 1880 to 1980, it is unequivocal that sugar consumption has a positive association with health and well-being. In 1979, the availability of sugar in the American food supply had never been higher and the US Surgeon General’s report on Health Promotion and Disease Prevention began with the unequivocal statement that, “The health of the American people has never been better.” If sugar were harmful, decade-by-decade improvements in public health should not have occurred in confluence with large increments in the availability of dietary sugars. Clearly, a century of increased sugar availability did not have the deleterious dose-dependent effects that the diet-centric rhetoricians claim.

Please cite this article as: Archer E. In Defense of Sugar: A Critique of Diet-Centrism. Prog Cardiovasc Dis (2018), https://doi.org/10.1016/j.pcad.2018.04.007
Despite the credulousness necessary to employ M-BMs and the unfalsifiable (i.e., pseudo-scientific) nature of the data produced, epidemiologists used these methods to generate thousands of influential publications that dominated the empirical, policy, and media landscapes and significantly altered the perception of diet-disease relations. Nevertheless, when the highly publicized diet-centric claims derived from M-BMs (e.g., see 146,148) were tested using objective study designs, they were found to be false.150–154 For example, Young and Karr examined over 50 nutritional claims and demonstrated that “100% of the observational claims failed to replicate” and some were statistically significant “in the opposite direction.”155 These results suggest that M-BMs are invalid and the vast majority of diet-disease relations are spurious.

Given the lack of support for diet-disease relations, my colleagues and I published a series of scientific, policy, and popular media articles2,4,6–146,147,156–161 with the express purpose of ending the use of M-BMs in scientific research and public policy formation. Our work empirically and theoretically refuted the validity of M-BMs and demonstrated that self-reported dietary data were physiologically implausible (i.e., meaningless numbers),4,146,147,163 “incompatible with life”150 p.347 and were repeatedly demonstrated to have little relation to actual nutrient and energy consumption.150,168–177 Furthermore, we showed that because there was no way to ascertain if the reported foods and beverages matched the respondent’s actual intake, the measurement errors associated with self-reported data were non-quantifiable and non-falsifiable (i.e., pseudo-scientific). More importantly, these non-quantifiable errors were systematically propagated when the self-reported foods and beverages were pseudo-quantified via the assignment nutrient and energy values to create proxy-estimates of consumption. Our conclusions were that M-BMs were “pseudo-scientific and inadmissible... [and]...constituted an unscientific and major misuse of research resources.”4 p. 911 These conclusions were supported by 60+ years of highly replicated evidence (for reviews please see 146). Nevertheless, the authors of the 2015 Dietary Guidelines for Americans172 a major report from the National Academies of Sciences, Engineering, and Medicine,173 and other influential research papers153,174,175 failed to cite, address, or even acknowledge our critiques and empirical refutations. Thus, many investigators and public policy architects remain uninformed about the lack of validity of M-BMs.

Most importantly, when the pseudo-scientific M-BM data, results, and conclusions are removed from the scientific discourse, there is little evidence to support diet-centric speculations or population-level dietary recommendations on dietary sugar consumption. Meta-analyses and reviews of randomized control trials demonstrated that the assumed negative effects of dietary sugars are due to positive energy balance (i.e., over-nutrition) driven by the confluence of physical inactivity and nongenetic evolutionary processes known as ‘accumulative maternal effects’.27,28,34,183,184 Stated simply, over the past few generations, PA and fitness levels declined precipitously in both children and adults,29,31–33,58,102,104,105 Given that PA is the major determinant of metabolic health, these trends led to decrements in metabolic control across the population,185 with concomitant increments in the prevalence of pathological metabolic phenotypes such as acquired (i.e., adult-onset) obesity and T2DM. (For reviews of these trends please see 27,28).

Maternal effects: why a mother’s blood sugar matters

The term ‘maternal effects’ describes the nongenetic evolutionary process by which a mother’s phenotype (i.e., her characteristics; e.g., body mass and behavior) alters both pre- and post-natal development, independent of genotype. Maternal effects significantly influence the survival and health trajectories of her offspring27,28 and in humans and other mammals, it is well established that a mother’s prenatal metabolic control is the major determinant of the birth weight and metabolic phenotype of her offspring (e.g., ratio of skeletal muscle to fat cells),27,28,186–190 Thus, as mothers became increasingly physically inactive and sedentary in the latter half of the 20th century,31–33 their PA fell below the “metabolic tipping point”.27,28 This loss of metabolic control increased the availability of sugar (glucose) and lipids to the intrauterine milieu during pregnancy. Because the availability of sugar (glucose) is a major determinant of fetal cellularity and concomitant adipocyte (fat-cell) number and pancreatic beta-cell development,27,28 the children of inactive mothers were born increasingly predisposed to inherited (i.e., pediatric) obesity and T2DM. With each passing generation, these ‘maternal effects’ accumulated and led to the twin-epidemics of both obesity and T2DM.27,28,34,191,192

The physiologic illiteracy of diet-centric public health recommendations

By design, detailed, prescriptive population-wide dietary recommendations on the consumption of dietary sugars (e.g., see 40,53,54) ignore individual differences and the physiologic context of the consumer. These diet-centric sanctions erroneously assume that the effects of sugar consumption are uniformly deleterious across the population. This error is based on the failure to understand that it is not the consumption of nutrient-energy, nor the rise in serum and tissue energy substrates that lead to metabolic disease, but rather the inability of skeletal muscle- and hepatic-cells to control energy intake and re-establish metabolic homeostasis in the post-prandial and post-absorptive periods by disposing of serum sugars and lipids. Thus, it is not ‘what you eat’ that causes obesity and NCDs, but what your body does with what is eaten.

As detailed herein, the chronic overconsumption of nutrient-energy and concomitant elevated serum and tissue energy substrates that lead to metabolic diseases can only be achieved via physical inactivity in current and/or past generations. Therefore, our present state of poor metabolic health is not because our diets are unhealthy or that we consume sugars, it is because we are physically inactive.27,29–34,58,73,101–103,193–195

Conclusion

In this review, I presented evidence to challenge diet-centrism and demonstrate that diet-centric reductionism has led researchers, policy-makers, and the public seriously astray. The consumption of dietary sugars is entirely innocuous in healthy populations and essential for many highly-active individuals. Thus, the only reason sugar consumption now appears deleterious in industrialized nations is that PA levels and metabolic-flux are too low to support metabolic health. Until the pathologies of physical inactivity and high sedentary behaviors are corrected, our population’s metabolic health will continue to decline. As such, current diet-centric hyperbole surrounding sugar consumption impedes progress in medical science by diverting attention and research resources from the true causes of obesity and metabolic diseases: low levels of PA and reduced metabolic-flux.

Conflict of interest

None.

Acknowledgements and disclosures

Dr. Archer has no conflicts of interest to report.
References

12. CDC. Achievements in public health, 1900–1999: safer and healthier foods Available at: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm4801a1.htm. (last accessed 03.12.17; Centers for Disease Control and Prevention).
16. Wasserman DH. Four grams of glucose.
17. El ia M, Cummings JH. Physiological aspects of energy metabolism and gastrointes-

116. Eva Archer / Progress in Cardiovascular Diseases xxx (2018) xxx-xxx
Archer E, Blair SN. Implausible data, false memories, and the status quo in dietary assessment.

Archer E, Lavie CJ. Evidence for sugary beverages and diabetes link is not so sweet, compelling or even plausible. BMJ. 2015;351.

Archer E, Lavie CJ. Nutrition has a 'non-essential/compulsive' design. An open letter to the National Academies. RealClearScience. Available at: https://www.realclearscience.com/articles/2017/12/16/nutrition_researchers_have_a_consensus_to_use_bad_science.html. (last accessed 01.11.2018).

Ioannidis JPA. Implausible results in human nutrition research. BMJ. 2013;347.

Barker DJ, Martyn CN, Osmond C, Hales CN, Fall CH. Growth in utero and serum cholesterol concentrations in adult life. BMJ. 1993;307:1524-1527.

Dear Editor,

I welcome the opportunity afforded by the letter of James DiNicolantonio, Pharm.D. and James O’Keefe, MD to continue the discourse elicited by my paper, “In Defense of Sugar: A Critique of Diet-Centrism.”\(^1\) In my abstract, I stated a novel and concise conclusion, “diet is a necessary but trivial factor in metabolic health, and...anti-sugar rhetoric is simply diet-centric disease-mongering engendered by physiologic illiteracy.”\(^2\) In the main text, I presented voluminous evidence from myriad domains to support my thesis. Yet given my contrarian nature, as I read their letter I inwardly hoped that these highly published authors would find errors in my logic or scholarship and provide intellectual fodder for a long-delayed and much-needed scientific debate. Nonetheless, my hopes were in vain; they failed to acknowledge, much less challenge, my critique.

Stated simply, they said nothing new.

The demonization of ‘diet’ dates to the dawn of recorded history. And while pre-scientific proscriptions were driven by magico-religious motives and made no pretense to rigor,\(^3\) modern conjectures can and should be judged solely on scientific scholarship. As I detailed comprehensively, ‘diet-centricism’ is a fundamentally flawed and unscientific perspective that engendered a great deal of illiterate nonsense.\(^4\) For example, modern diet-centric speculations led to the quaint but questionable notion that ‘raw foods’, ‘real foods’, ‘super foods’, ‘whole foods’, ‘organic foods’, ‘detox foods’, ‘vegan diets’, and ‘clean eating’.

Nevertheless, only two words are necessary to dispel this miasma of physiologic illiteracy: infant formula. By the late 1940s, half of all infants in the United States were reared on this 100% artificial/synthetic product\(^4\) containing ~40% of calories from added sugars (e.g., lactose, sucrose, glucose, fructose, and/or corn syrup).\(^5,6\) Given that both life-salubrious or that whole/‘or organic,’ ‘real,’ ‘raw,’ ‘super’ or ‘local’ foods are essential for health. More importantly, both infant formula and breast milk contain more sugars than any other nutrients (i.e., ~7% sugars versus ~4% fat and ~0.9% protein).\(^7\) Thus, since the evolutionary arrival of our species, human infants began life by consuming massive amounts of sugar at a critical period in their development, it defies any semblance of logic or scientific literacy to suggest that ‘sugar’ is in-salubrious or that ‘whole’ or ‘organic,’ ‘real’, ‘raw’, ‘super’ or ‘local’ foods are essential for health. More importantly, both infant formula and breast milk contain more sugars than any other nutrients (i.e., ~7% sugars versus ~4% fat and ~0.9% protein).\(^7\) Thus, since the evolutionary arrival of our species, human infants began life by consuming massive amounts of sugar. And for those who wish to argue that the glucose molecules in breast milk or starch are different from the glucose molecules in sucrose, or that the fructose molecules in honey and fruit have different metabolic effects than the fructose molecules in high-fructose corn syrup, I suggest they read a basic biochemistry textbook and attempt an unbiased perusal of the literature.\(^8\)-\(^15\) Magical and miraculous thinking have no place in medicine and science.

Yet most importantly, the proscriptions of dietary sugar by the World Health Organization,\(^16\) American Heart Association,\(^17\) and Dietary Guidelines Advisory Committee\(^18\) were founded almost exclusively on mere statistical associations derived from data that my work demonstrated to be “physiologically implausible”, “incompatible with survival” and “inadmissible” as scientific evidence.\(^19\)-\(^22\) The conclusions of this large body of work were that the memory-based methods used to collect these implausible data (e.g., food frequency questionnaires and 24-hour dietary recalls) were “pseudo-scientific” ([and constituted a] major misuse of research resources.)\(^20\) p. 911 (see also\(^11\),\(^12\)). Thus, there are no valid data to support diet-centric recommendations or other hyperbolic nonsense surrounding dietary sugars.

As I explained in great mechanistic detail,\(^1,3,24,25\) it is not ‘what one eats’ (i.e., ‘diet’) that causes obesity and metabolic disease, but ‘what one’s body does with what is eaten’ (i.e., nutrient-energy physiology).\(^1,3,24,25\) Thus, prescriptive, population-level dietary recommendations are futile because one size does not and cannot fit all. And given that skeletal muscle- and hepatic-cell metabolic-flux are the major determinants of metabolic control,\(^1,3,25\) it is unequivocal that obesity and metabolic diseases are caused by the confluence of physical inactivity\(^26\)-\(^30\) and non-genetic evolutionary processes (i.e., accumulative maternal effects) over many generations.\(^1,24,25,29\)-\(^31\) Moreover, it is especially important to note that in my work I presented detailed causal mechanisms rather than mere statistical associations derived from physiologically implausible and scientifically inadmissible data.\(^3\),\(^19\)-\(^23\),\(^34\)-\(^38\) As such, my work is rigorous, comprehensive, and definitive.

In closing, it is time for the medical and scientific communities to return to their roots, eschew magical and miraculous thinking, and demonstrate a modicum of skepticism by refusing the illiterate nonsense and puritanical proscriptions engendered by diet-centrism. I hope my body of work is a small but productive first step on this journey.

References

https://doi.org/10.1016/j.pcad.2018.07.013
0033-0620/© 2018 Elsevier Inc. All rights reserved.

Please cite this article as: Archer E., Prog Cardiovasc Dis (2018), https://doi.org/10.1016/j.pcad.2018.07.013

Edward Archer
Evolving FX, USA
E-mail address: archer1@evolvingfx.com.

https://doi.org/10.1016/j.pcad.2018.07.013